传统软件
传统软件是「if-then」的基本逻辑,人类通过自己的经验总结出一些有效的规则,然后让计算机自动的运行这些规则。传统软件永远不可能超越人类的知识边界,因为所有规则都是人类制定的。
简单的说:传统软件是「基于规则」的,需要人为的设定条件,并且告诉计算机符合这个条件后该做什么。
但是现实生活中充满了各种各样的复杂问题,这些问题几乎不可能通过制定规则来解决,比如人脸识别通过规则来解决效果会很差。
人工智能
人工智能现在已经发展出很多不同分支,技术原理也多种多样,这里只介绍当下最火的深度学习。
深度学习的技术原理跟传统软件的逻辑完全不同:
机器从「特定的」大量数据中总结规律,归纳出某些「特定的知识」,然后将这种「知识」应用到现实场景中去解决实际问题。
这就是人工智能发展到现阶段的本质逻辑。而人工智能总结出来的知识并不是像传统软件一样,可以直观精确的表达出来。它更像人类学习到的知识一样,比较抽象,很难表达。
人工智能只解决特定问题
当下的人工智能是从大量数据中总结归纳知识,这种粗暴的「归纳法」有一个很大的问题是:并不关心为什么
正是因为当下的人工智能是建立在「归纳逻辑」上的,所以也会犯很低级的错误